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Abstract 

Background: Pesticide use for fruits and vegetable production in Uganda may result in presence of residues on pro-
duce which may pose health risks to consumers. Uganda does not have an established system for monitoring pesti-
cide residues in fruits and vegetables and assessing potential health risks. This research aimed to conduct a health risk 
assessment of presence of pesticide residues in fruits and vegetables in the Kampala Metropolitan Area in Uganda.

Method: Pesticides were measured in 160 fruits and vegetables samples collected at farms, markets, street vendors, 
restaurants and homes; and analysed using liquid chromatography-tandem mass spectrometry and gas chromatog-
raphy-mass spectrometry. Fruit and vegetable consumption information was collected from 2177 people. Pesticide 
concentrations were compared with European Union maximum residual limits (MRLs). Mean values of pesticide con-
centration residues found in the sample of fruits and vegetables; and fruits and vegetables intake and body weight 
were used to calculate the estimated daily intake (EDI) of pesticide residues. EDI values were compared with accept-
able daily intakes (ADI) to calculate the hazard quotient by age group, and stage at which consumption happens 
along the chain.

Results: Overall, 57 pesticides were detected in fruits and vegetables from farm to fork. Of the 57, 39 pesticides were 
detected in all the fruits and vegetables studied. Concentrations of fonofos, fenitrothion and fenhexamid were above 
the European Union MRLs in some samples. Hazard quotients based on dietary ingestion scenarios for 18 pesticides, 
including dichlorvos (444) alanycarb (314), fonofos (68), fenitrothion (62), dioxacarb (55) and benfuracarb (24) and 
others, were above 1, indicating the possibility of chronic health risk to consumers. Chronic health risk decreased with 
age but was stable for stage at which consumption happens along the food chain. The number of pesticides with EDI 
greater than the ADI decreased with increase in age; with 18, 13, 9, 11, 8, 9, and 9 pesticides for age groups < 5, 5-12, 
13-19, 20-25, 36-49 and ≥ 50 respectively.

Conclusion: Chronic dietary pesticide exposures to Ugandans are likely common, and for some pesticides result in 
exposure exceeding health-based benchmarks. Risks were highest for younger participants. There is an urgent need 
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Introduction
Pesticides are widely used in agriculture to control 
pests and disease in crops to improve the quality of pro-
duce (Aktar et al. 2009). Some commonly used classes 
of pesticides include organophosphates, carbamates, 
pyrethroids and neonicotinoids (Matowo et  al. 2020; 
Maggi et  al. 2019; Fuhrimann et  al. 2021; Staudacher 
et  al. 2020). Most of these pesticide chemical groups, 
such as organophosphates, are broad spectrum insec-
ticides, fungicides or herbicides used to control many 
different pests, diseases or weeds in different crops 
(Hill et al. 2017). Many organophosphates, carbamates, 
pyrethroids and neonicotinoids, all neurotoxic pes-
ticides, are registered for use in Uganda, (Ministry of 
Agriculture Animal Industry and Fisheries, 2018) and 
use is increasing with increasing consumption of fruits 
and vegetables including tomatoes, cabbage and water-
melons, to name but a few (Ngabirano and Birungi 
2020).

Organophosphates and carbamates pesticides are gen-
erally not persistent because they degrade when exposed 
to sunlight, air and soils, but they often have high solu-
bility and volatility and are heavily used in many farming 
systems (Akkad and Schwack 2010). Organophosphates 
and carbamates inhibit cholinesterase and may impact 
neurodevelopment by other mechanisms, including 
interference in synaptogenesis and myelin sheath forma-
tion (Vale and Lotti 2015; Sagiv et al. 2019). Pyrethroids 
and neonicotinoids are often systemic pesticides with a 
higher affinity to soil and, especially for neonicotinoids, 
have the potential to bioaccumulate. They also have low 
volatility (Laskowski 2002; Bonmatin et  al. 2015). Pyre-
throids act by altering the function of voltage-gated 
sodium channel and consequently disrupt electrical 
signalling in the nervous system (Soderlund 2010) and 
are generally less acutely toxic than organophosphates 
(Simaremare et  al. 2019). However, they are neurotoxi-
cants and have been associated with confusion, lacri-
mation and salivation (Bradberry et  al. 2005) and also 
poorer development and asthma in children (Pitzer et al. 
2021; Vester et  al. 2019). The mechanism of toxicity for 
neonicotinoids is based on selective binding and interac-
tion with nicotinic acetylcholine receptor sites of a target 
organism causing paralysis that leads to death (Taillebois 
et  al. 2018; Cartereau et  al. 2021; Houchat et  al. 2020), 
and they have also been associated with development or 
neurological disorders (Cimino et al. 2017) in humans.

The use of these chemicals in agriculture may result 
in residues in food and expose consumers. Events where 
high levels of pesticide contamination has occurred have 
resulted in acute health risks including nausea, exces-
sive sweating and salivation, diarrhoea and vomiting, 
inhibition of blood clotting, and paralysis of the respira-
tory and circulatory systems (PAN 2018). Several studies 
have shown that chronic exposure to low levels of some 
neurotoxic pesticides are associated with poorer learn-
ing and behavioral problems in children, memory loss, 
loss of coordination, reduced speed of response to stim-
uli, reduced visual ability, altered or uncontrolled mood 
and general weakness; reproductive defects and cancers 
(Nicolopoulou-Stamati et  al. 2016; Coker et  al. 2018; 
Chiu et al. 2018).

In Uganda, the volume of pesticides used has increased 
from 338 t in the 1960s to 18,928.16 t in 2019 (FOA: 
FAOSTAT 2021). Many farmers do not follow recom-
mended mixing concentrations on label instructions and 
pre-harvest intervals (Kaye et  al. 2015). Such improper 
pesticide use practices may result in higher levels of 
pesticide residues in fruits and vegetables (Grewel et al. 
2017) that leave the farm to the final consumer. While 
they are important sources of minerals, vitamins, and 
other healthful nutrients, consumption of fruits and 
vegetables contaminated with pesticide can be a route 
of exposure to hazardous chemicals. Fruit and vegetable 
consumption is a protective factor for noncommunica-
ble diseases such as diabetes (World Health Organisa-
tion 2013), and consumption is rising among Ugandans, 
which consume an average 260 g of fruits and vegetables 
each day (Ssemugabo et  al. 2021a). Fruit and vegetable 
consumption has grown among residents of the Kam-
pala Metropolitan Area (KMA) (Kabwama et  al. 2019), 
and organophosphate, carbamate, pyrethroid and neoni-
cotinoid pesticides have been previously detected in the 
tomatoes, watermelon, cabbages among others in this 
market (Kaye et  al. 2015; Ssemugabo et  al. 2021b; Atu-
haire et al. 2017).

In the current study, we assessed potential pesticide 
exposures and health risks from consumption of fruit and 
vegetables by residents of the KMA, in Uganda.

Materials and methods
Study area
This study was conducted in Kampala, Wakiso and 
Mukono Districts, three of the 5 districts that make up 

to increase monitoring and regulation of pesticides in fruits and vegetables in order to protect consumers, especially 
the children who are  vulnerable to the adverse effects of pesticides.
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the KMA in Uganda. The 3 districts have a population 
of 10,812,700 people (UBOS 2018) and cover an area 
of 1000  km2 (Kasimbazi 2016). Agriculture is the larg-
est economic activity in Central Uganda within which 
the KMA is located, supporting 39.3% of the population 
(UBOS 2018). This region has many large fresh produce 
markets, restaurants, fruit and vegetable vending along 
the streets, as well as many of the farms where fruits and 
vegetables consumed within central Uganda are grown. 
Kampala, Wakiso and Mukono are inhabited by 15% 
of Uganda’s population and contain Uganda’s districts 
that consume a large volume of the fruit and vegetables 
produced.

Ethical clearance to conduct the study was obtained 
from the Makerere University School of Public Health 
Higher Degrees, Research and Ethics Committee; and 
registered by Uganda National Council for Science and 
Technology (SS 5203). Participation in the study was 
voluntary and participants (farmers, restaurants market 
managers, street fruit and vegetable vendors, and house-
hold heads) provided informed written consent to collect 
samples and fruit and vegetable dietary intake informa-
tion. All samples and questionnaire were coded with an 
anonymous identification number.

Pesticide residue data
Sampling of fruits and vegetables
Fruits and vegetables samples were collected from key 
stages along the supply chain including farms (50), mar-
kets (50), street vendors (20), restaurants (20) and homes 
(20), totaling 160 samples. The detailed methodology 
used to collect the fruits and vegetable samples has been 
previously described (Ssemugabo et  al. 2021b). Briefly, 
fresh fruit and vegetable samples were purchased and 
collected in sterile polythene bags or PET (polyethylene 
terephthalate) plastic containers from selected farms, 
markets, and street vendors. Samples of ready-to-eat 
foods were bought from restaurants and homes, espe-
cially juices and salads that do not contain fat-soluble 
substances. Three replicate fruit and vegetable samples 
were collected at each location measuring at least 1 kg for 
small and 2 kg for large produce as suggested by Codex 
guidelines (El-Zaher et  al. 2011; Food and Agriculture 
Organisation 1999); processed food samples were at least 
1 kg or 1 l in case of juice. The samples were stored in a 
cooler and transported to the laboratory within 8 h and 
stored at − 20 °C until analysis.

Sample preparation and extraction
A total of 93 pesticides residues were screened in the 
fruit and vegetable samples (Supplementary Table  1). 
Using the Quick, Easy, Cheap, Effective, Rugged and Safe 
(QuEChERS) approach, samples were prepared, cleaned 

and extracted to determine of pesticide residues (Ana-
stassiades et al. 2002). Briefly, 1-2 kgs of fruit or vegetable 
was chopped, grinded and blended to homogenize the 
sample. Of the homogenized sample, 200 g was put into 
containers and immediately frozen in order to minimize 
the risk of degradation of any pesticide residues present. 
Ten grams of homogenized sample was mixed with 3 g of 
sodium bicarbonate (NaHCO3) and 20.0 mL acetonitrile, 
vortexed and placed on a mechanical shaker at 300 rpm/
min for 15 min to improve extractability of pesticide resi-
dues and then centrifuged for 3 min at 3200 rpm. To this, 
10 g of anhydrous sodium sulphate (Na2SO4) was then 
added, vortexed and centrifuged for 3 min at 3200 rpm. 
We filtered the crude extract using a 0.2-μm PTFE 
syringe filter. The final supernatant layer (0.50 g /mL) was 
transferred into the vials and injected into the LC-MS/
MS for analysis of pesticide residues (Ssemugabo et  al. 
2021b).

Pesticide analysis
Liquid chromatography – Tandem mass spectrometry 
(LC-MS/MS) analysis was carried to detect and ensure 
quality of the pesticides residue measurements. A zorbax 
eclipse plus C18 capillary column (150 mm with 2.1 mm 
internal diameter and 1.8 μm particle size) operating at 
35 °C to 360 °C was used with the internal temperature 
set at 35 °C for 1 min, then ramped to 120 °C per minute 
and 375 °C per minute. This process was run over two 
mobile phases. Phase A involved – water (0.1% formic 
acid, 5 mM ammonium formate, and 2% MeOH). Phase B 
involved – methanol (0.1% formic acid, 5 mM ammonium 
formate, 2% water). The injector temperature was 120 °C 
and carrier gas was helium at a flow rate of 13 L/minute 
with splitless injection. The injection volume was 5 μL at 
a pressure of 45 psi. The MS ion source temperature was 
120 °C for a minute and raised at a rate of 35 °C per min-
ute to 375 °C. Confirmation analysis utilised LC-MS/MS 
which requires two product ions. Compounds with only 
one product ion were quantified and confirmed using the 
second ion. For confirmation, the relative ion intensity for 
a pesticide in a sample was calculated and the value com-
pared to the equivalence for a calibration standard. For 
positive confirmation, the retention times were matched 
to the calibration standard as well the relative ion inten-
sities according to the recommended maximum toler-
ances. Limits of detection (LOD) was determined during 
the method validation and measurements of uncertainty.

The method developed by Keppel et  al. at the United 
States Food and Drug Administration (U.S. FDA) (Kab-
wama et  al. 2019; Ssemugabo et  al. 2021b) was used to 
measure dithiocarbamates (mancozeb, maneb, dithane, 
thiram, metam sodium and propineb. Frozen sub-sam-
ples of 10 g were placed into a Duran bottle (250 ml) and 
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mixed with isooctane (20 ml) followed by stannous chlo-
ride (reducing solution) in hydrochloric acid (100 ml), 
and sealed immediately with a septum and cap. The sam-
ple was incubated at 80 °C in a water bath for 1.5 h with 
frequent shaking. The Duran bottles were removed and 
left at ambient temperature for approximately 1 h. The 
bottles were frozen for 30 min to allow the generated 
carbon disulphide gas to condense. The samples were 
shaken and left for 5 min. The organic phase (iso-octane) 
was removed and placed in a vial prior to the quantita-
tion of carbon disulphide by Gas Chromatography-Mass 
spectrometry (GC–MS). Spiking was done twice, once at 
the limit of quantitation (LOQ) (50 μg/kg) and another 
at the expected residue level (1000 μg/kg), as obtained 
from previous runs during instrument optimization 
(mean recoveries for individual pesticides in the range 60 
– 140%) and precision  (RSDr ≤ 12%). A 5-point calibra-
tion was used, ranging from 0.125–5 μg/ml. The method’s 
LOQ was set at 0.05 mg/kg which equates to the calibra-
tion standard of 0.125 μg/ml. All extracts were analyzed 
using GC-MS. Final pesticide residues concentrations 
were expressed in mg/kg of food.

Dietary consumption data
A modified semi-structured food frequency question-
naire from the World Health Organization’s (WHO) 
STEPwise approach to surveillance, standardized 
method of collecting data on risk factors for noncom-
municable diseases (NCDs) (WHO 2017) was used 
was used to interview 2177 participants to assess fruit 
and vegetable consumption over a 24-h dietary recall 
period and their body weight was concurrently meas-
ured using a weighing scale. The detailed methodology 
on this has been described elsewhere (Ssemugabo et  al. 
2021a). Briefly, based on typical Ugandan diets, a food 
album was developed with different quantities of selected 
fruits and vegetables. Each research assistant was given a 
copy of the food album as a guide during the interview. 
Respondents were asked to identify the quantities they 
consume per serving to determine the amounts con-
sumed. Based on portion size in the food album, we esti-
mated intake in grams of each fruit and vegetable each 
day of the week. For children under 18 years, their par-
ents or caretakers were interviewed. Participant’s weight 
was also measured thrice and the average calculated. For 
children below 2 years who cannot stand, their weight 
was obtained by reviewing their immunization chart or 
asking their parents or caregivers the measurement from 
their last weighing event. Socio-demographics data was 
also obtained using the study questionnaire. Consump-
tion data was collected for five commonly consumed 
and pesticide intensive fruits and vegetables, that is: 
watermelon, passion fruit, tomato, cabbage and eggplant 

following interviews with farmers and agricultural exten-
sion. Workers.

Health risk assessment
We first prepared descriptive statistics of the pesticide 
residue levels in the produce samples. The mean pesti-
cide concentrations were then compared with European 
Union maximum residual limits (EU MRLs) obtained 
from the pesticide residue database (https:// ec. europa. 
eu/ food/ plant/ pesti cides/ eu- pesti cides- datab ase/ mrls/? 
event= search. pr) (EUROPEAN UNION 2021). EU 
MRLs were used because they provided comprehensive 
standard values for all fruits studied; they have also been 
used in other African studies (Fosu et al. 2017; Issa et al. 
2018). We also used the mean pesticide concentrations 
to calculate the  estimated pesticide intake to compare 
with acceptable daily intakes (ADIs). Estimated daily 
intake (EDI) (mg/kg/bw/day) was calculated by multiply-
ing the mean concentration of each pesticide (C) and the 
fruits and vegetable consumption rate (FVCR) (g/day) 
and dividing this by body weight (BW) using the follow-
ing formula EDI = (C x FVCR)/BW (Gad Alla et al. 2015; 
Chen et al. 2011). The FVCR used was obtained from the 
dietary consumption survey  (Ssemugabo et  al. 2021a). 
FVCR was calculated as mean consumption of fruits and 
vegetables studied for the sample population as well as 
for different age groups studied that is < 5, 5-12, 13-19, 
20-24, 25-35, 36-49 and 50+. BW used was measured 
during the dietary consumption survey with the mean 
for general sample population and age groups calculated 
accordingly. The ADI (mg/kg/bw/day) for the different 
pesticides was obtained from the EU pesticide residue 
database (EUROPEAN UNION 2021). The chronic risk 
assessment for pesticide residue was calculated by com-
paring EDI with the ADI to get the hazard quotient (HQ) 
using the following equation; HQ = EDI/ADI. A hazard 
quotient (HQ) > 1 indicates exposures over the health-
based benchmarks and the potential to induce unaccep-
table health risks among consumers.

Results
Pesticide residue concentrations
The mean concentration of organophosphates, carba-
mates, pyrethroids and neonicotinoids among other pes-
ticides detected in watermelons, passion fruit, tomato, 
cabbage and eggplants and comparisons with their 
respective MRLs are shown in Table 1. Out of the 62 pes-
ticide active ingredients detected, 5 were excluded due to 
the lack of verified maximum residue levels (MRLs) in the 
EU database for the studied fruits and vegetables. There-
fore, 57 pesticides were considered for the risk assess-
ment. Of the 57 pesticides, 39 pesticides were detected 
in all the fruits and vegetable types. Dimethoate was 

https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=search.pr
https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=search.pr
https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=search.pr
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Table 1 Concentration of pesticide residues per fruit and vegetable type compared with the MRLs

Pesticide residues LOD (mg/kg) Water melon (mg/
kg)

Passion fruit (mg/
kg)

Tomato (mg/kg) Cabbage (mg/kg) Eggplant (mg/
kg)

Mean MRL Mean MRL Mean MRL Mean MRL Mean MRL

Dithiocarbamatea 0.000006 0.001 1.5 0.00007 0.05 0.0002 3 0.0006 3 0.0004 3

Omethoate 0.00002 0.0004 0.01 0.0002 0.01 0.0003 0.01 BDL 0.01 0.00007 0.01

Acephate 0.00003 0.001 0.01 0.001 0.01 0.0001 0.01 0.00008 0.01 0.0002 0.01

Monocrotophos 0.00001 0.00003 0.01 0.00004 0.01 BDL 0.01 0.00003 0.01 0.00002 0.01

Vamidothion 0.00001 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01 0.00008 0.01

Dimethoate 0.000008 0.0007 0.01 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01

Mevinphos 0.00003 BDL 0.01 BDL 0.01 BDL 0.01 0.00004 0.01 0.00005 0.01

Phosphamidon 0.00002 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01 0.00005 0.01

Fonofos 0.00001 0.03a 0.01 0.2a 0.01 0.2 10 0.1a 0.01 0.1a 0.01
Azamethiphos 0.000005 0.00002 0.01 0.000007 0.01 BDL 0.01 BDL 0.01 BDL 0.01

Dichlorvos 0.00002 0.003 0.01 0.007 0.01 0.0001 0.01 0.0002 0.01 0.0007 0.01

Malaoxon 0.00001 BDL 0.02 BDL 0.02 0.00004 0.02 0.00002 0.02 BDL 0.02

Methidathion 0.00001 BDL 0.02 0.000003 0.02 0.00002 0.02 BDL 0.02 0.000001 0.02

Malathion 0.00002 BDL 0.02 BDL 0.02 BDL 0.02 BDL 0.02 0.00007 0.02

Methacrifos 0.000005 BDL 0.01 0.00003 0.01 BDL 0.01 BDL 0.01 BDL 0.01

Ethoprophos 0.00008 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01

Fenamiphos 0.000009 BDL 0.02 BDL 0.02 BDL 0.04 BDL 0.04 BDL 0.02

Quinalphos 0.00003 0.0001 0.01 0.0001 0.01 0.00003 0.01 BDL 0.01 0.0001 0.01

Coumaphos 0.00002 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01

Chlorpyriphos-methyl 0.000008 BDL 0.01 0.00004 0.01 0.00009 0.01 0.00005 0.01 0.00002 0.01

Temephos 0.000008 BDL 0.01 0.00001 0.01 BDL 0.01 0.000009 0.01 BDL 0.01

Profenofos 0.00001 0.003 0.01 0.00002 0.01 0.04 10 0.003 0.01 0.005 0.01

Pirimiphosmethyl 0.00002 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01 0.00001 0.01

Fenitrothion 0.00001 0.02a 0.01 0.004 0.01 0.01a 0.01 0.03a 0.01 0.03a 0.01
Aminocarb 0.00002 BDL 0.01 0.0007 0.01 BDL 0.01 0.00008 0.01 0.00002 0.01

Methomyl 0.00003 0.00006 0.015 0.00003 0.01 0.00003 0.01 BDL 0.01 0.00003 0.01

Aldicarbfragment 0.00001 0.00002 0.02 0.00002 0.02 0.00004 0.02 0.00002 0.02 BDL 0.02

Pirimicarb 0.00003 0.00004 0.5 0.00004 0.01 BDL 0.5 BDL 0.5 BDL 0.5

Dioxacarb 0.00001 0.004 0.01 0.003 0.01 0.003 0.01 0.003 0.01 0.004 0.01

Carbaryl 0.000008 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01 0.00001 0.01

Carbofuran 0.000009 0.00003 0.01 BDL 0.01 BDL 0.002 BDL 0.002 0.00003 0.002

Alanycarb 0.00001 0.0001 0.02 0.00006 0.02 0.08 0.02 0.01 0.02 0.006 0.02

Benfuracarb 0.00005 0.0005 0.01 BDL 0.01 0.004 0.002 0.07 0.002 0.004 0.002

Methiocarb 0.00004 BDL 0.03 BDL 0.03 BDL 0.03 0.00005 0.03 BDL 0.03

Imidacloprid 0.00003 0.0007 0.2 0.0008 0.05 0.0004 0.5 0.0004 0.5 0.0002 0.5

Acetamiprid 0.00002 0.004 0.2 0.002 0.01 0.008 0.5 0.005 0.4 0.001 0.2

Thiacloprid 0.00001 BDL 0.2 BDL 0.01 BDL 0.5 BDL 0.3 BDL 0.7

Bifenthrin 0.00002 0.0001 0.01 0.00004 0.01 0.0004 0.3 0.00005 0.4 BDL 0.3

Lambda-Cyhalothrin 0.00002 0.0002 0.06 0.0001 0.01 0.0002 0.07 0.0002 0.15 0.0002 0.3

Deltamethrin 0.00001 BDL 0.02 BDL 0.01 BDL 0.07 0.00006 0.1 BDL 0.4

Cypermethrin 0.00001 0.0002 0.2 BDL 0.05 0.001 0.5 0.0004 1 0.0004 0.5

Carbendazim 0.00002 BDL 0.1 0.0001 0.1 BDL 0.3 0.0001 0.1 BDL 0.5

Imazalil 0.00001 0.0005 0.01 0.0004 0.01 0.0001 0.3 0.0003 0.01 0.0003 0.01

Metazachlor 0.00001 0.00001 0.02 0.00004 0.02 0.00006 0.02 0.00002 0.4 0.00002 0.02

Metalaxyl 0.00002 BDL 0.2 BDL 0.01 0.00005 0.3 BDL 0.06 BDL 0.01

Azaconazole 0.000006 0.000009 0.01 0.0001 0.01 0.000008 0.01 0.00007 0.01 0.000008 0.01

Clomazone 0.000007 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01
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detected only in watermelon with a mean concentration 
of 0.0007 mg/kg. Fonofos was detected in all fruits and 
vegetables with concentrations above the MRLs in water-
melon (0.03 mgkg), passion fruit (0.02 mg/kg), cabbages 
(0.11 mg/kg) and eggplants (0.14 mg/kg). Methidathion 
was not detected in watermelon and cabbages and mala-
thion was not detected in passion fruit. Methacrifos was 
detected in passion fruit at 0.00003 mg/kg and cabbages 
at 0.000002 mg/kg. Ethoprophos was not detected in 
vegetables but only in eggplants at 0.0003 mg/kg. Cou-
maphos and pirimiphos-methyl were detected only cab-
bages at 0.0000005 mg/kg and eggplants at 0.00001 mg/kg 
respectively. Apart from passion fruit, fenitrothion con-
centration was above the MRLs in watermelon (0.02 mg/
kg), tomato (0.013 mg/kg), cabbage (0.03 mg/kg) and 
eggplant (0.03 mg/kg). Neonicotinoids were detected in 
almost all fruits and vegetables apart from thiacloprid 
that was only detected in passion fruit 0.000007 mg/kg 
and tomato 0.000002 mg/kg. Deltamethrin, azoxystrobin 
and proquinazid were only detected in vegetables with 
concentrations below the MRLs. Although not detected 
in tomato, fenhexamid’s concentration was above the 
MRLs in watermelon (0.01 mg/kg), passion fruit (0.07 mg/
kg) and cabbage (0.03 mg/kg).

Health risk assessment by stage of consumption 
along the chain
The risk of exposures to pesticides residues in fruits 
and vegetables are evaluated by the stage at which con-
sumption may occur along the chain including at the 
farm, market, street vendor, restaurant and home as 
shown in Table  2. The EDI was higher than the ADI 
in at least one of the stages at which consumption 

may occur in 16 of the 57 pesticides assessed. EDIs 
for dichlorvos, fenitrothion, alanycarb and benfura-
carb were above the ADI at all stages of consumption. 
EDIs for fonofos and profenofos exceeded the ADI at 
four stages of consumption. Fonofos, dichlorvos, feni-
trothion, dioxacarb, alanycarb and benfuracarb pre-
sented the highest risk levels with HQs of 27.5, 442.6, 
23.6, 29.5, 118.0 and 23.6 respectively, at the farm and 
throughout the entire supply chain (See supplementary 
Table 2). Overall, pesticide concentration at street ven-
dors presented lower HQs and consequently lower like-
lihood for health risks compared to other stages along 
the chain (Fig. 1).

Health risk assessment by age group
We evaluated the risk of consumption of pesticide res-
idues by age of consumers as shown in Table  3. EDIs 
for fonofos, dichlorvos, profenofos, fenitrothion, diox-
acarb, alanycarb, benfuracarb, cypermethrin and flu-
azifop exceeded ADIs throughout all age groups and 
consequently pose chronic health risks. The number 
of pesticides with EDIs greater than the ADI decreased 
with age with 18, 13, 9, 11, 8, 9, and 9 for age groups 
under 5 years, 5-12, 13-19, 20-25, 36-49 and 50+ years 
respectively. Dichlorvos had the highest risk with a 
HQ of 444 followed by alanycarb (314), Fonofos (68), 
fenitrothion (62), dioxacarb (55) and benfuracarb (24) 
among children under 5 with a similar trend across age 
groups (see supplementary Table 2). Overall, HQ values 
decreased across age groups with children under 5 pre-
senting highest risks and adults 50+ having the lowest 
chronic health risks for the nine pesticides as shown in 
Fig. 2.

Table 1 (continued)

Pesticide residues LOD (mg/kg) Water melon (mg/
kg)

Passion fruit (mg/
kg)

Tomato (mg/kg) Cabbage (mg/kg) Eggplant (mg/
kg)

Mean MRL Mean MRL Mean MRL Mean MRL Mean MRL

Azoxystrobin 0.000007 BDL 1 BDL 4 0.00456 3 0.003 5 0.003 3

Pyrimethanil 0.00002 0.0001 0.01 0.00008 0.01 0.0001 1 0.00008 0.01 0.00006 1

Spirotetramat 0.00002 0.00003 0.2 BDL 0.1 0.00009 2 0.00001 2 BDL 2

Fenhexamid 0.00001 0.01a 0.01 0.07a 0.01 BDL 2 0.03a 0.01 0.009 2

Fenarimol 0.00001 0.0006 0.05 0.0003 0.02 0.0002 0.02 0.0003 0.02 0.0004 0.02

Fluazifop 0.00002 0.005 0.01 BDL 0.01 BDL 0.06 0.0004 0.01 BDL 1

Flufenoxuron 0.00002 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01 BDL 0.01

Pyriproxyfen 0.000007 BDL 0.05 BDL 0.05 BDL 1 BDL 0.05 BDL 1

Quinoxyfen 0.00003 BDL 0.05 0.00005 0.02 0.00004 0.02 BDL 0.02 0.00003 0.02

Proquinazid 0.00001 BDL 0.02 BDL 0.02 0.001 0.15 0.0003 0.02 0.00009 0.02

BDL Below detection limits, LOD Limit of Detection
a Above the MRLs
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Table 2 Estimated daily intake (mgkg/bw/day) for fruits and vegetables by stage along the chain

Pesticides ADI (mg/kg/bw/
day)

EDI (mg/kg/bw/day)

Farm Market Street Restaurant Home

Dithiocarbamatea 0.05 0.002 0.003 0.005 0.002 0.002

Omethoate 0.002 4.7E-06 0.002a BDL 0.002a 2.9E-06

Acephate 0.03 0.005 0.004 0.0004 0.002 0.0006

Monocrotophos 0.0006 0.0001 0.0002 0.0002 0.0002 0.0001

Vamidothion 0.008 0.0002 0.0002 5.9E-07 3.54E-06 2.95E-06

Dimethoate 0.002 BDL 0.003a BDL BDL BDL

Mevinphos 0.001 0.0002 0.0002 2.4E-06 2.4E-06 5.9E-05

Phosphamidon 0.0005 1.2E-06 1.18E-06 1.18E-06 BDL 1.77E-06

Fonofos 0.03 0.8a 0.9a 0.006 1.2a 0.4a

Azamethiphos 0.025 2.4E-06 5.9E-05 1.2E-06 5.9E-06 BDL

Dichlorvos 0.00008 0.04a 0.0006a 0.0004a 0.002a 0.003a

Malaoxon 0.03 4.1E-06 4.1E-06 0.0003 5.9E-05 5.9E-05

Methidathion 0.001 BDL BDL 1.2E-06 BDL 0.0002

Malathion 0.03 0.0003 BDL BDL BDL 2.9E-06

Methacrifos 0.006 BDL 0.0001 BDL BDL BDL

Ethoprophos 0.0004 BDL 0.0001 BDL 0.0001 0.0002

Fenamiphos 0.0008 5.9E-08 1.2E-06 5.9E-05 1.8E-06 BDL

Quinalphos 0.001 0.0001 0.0005 0.0004 0.001a 0.0006

Coumaphos 0.001 1.8E-07 BDL BDL BDL BDL

Chlorpyriphos-methyl 0.01 0.0005 BDL 2.9E-06 0.0006 BDL

Temephos 0.001 BDL 3.5E-06 BDL 2.9E-06 0.0001

Profenofos 0.03 0.1a 0.04a 0.04a 0.06a 0.004

Pirimiphosmethyl 0.03 BDL 4.7E-06 BDL BDL BDL

Fenitrothion 0.005 0.1a 0.05a 0.2a 0.2a 0.02a

Aminocarb 0.001 0.0002 0.003a 0.0001 0.0001 5.9E-05

Methomyl 0.0025 0.0002 0.0003 4.1E-06 0.0002 2.9E-06

Aldicarbfragment 0.001 0.0001 0.0001 0.000177 5.9E-05 0.0001

Pirimicarb 0.035 0.0001 0.0001 BDL 0.0004 5.9E-05

Dioxacarb 0.001 0.03a 0.02a 0.02a BDL BDL

Carbaryl 0.0075 2.4E-06 2.4E-06 1.8E-06 BDL 0.0001

Carbofuran 0.00015 4.1E-06 5.9E-07 0.0003a 0.0002a 2.9E-07

Alanycarb 0.001 0.1a 0.1a 0.06a 0.1a 0.2a

Benfuracarb 0.01 0.2a 0.05a 0.02a 4.7E-13 0.02a

Methiocarb 0.00025 0.0002 5.9E-05 0.0002 4.1E-06 5.9E-07

Imidacloprid 0.06 0.003 0.002 0.005 0.006 0.001

Acetamiprid 0.025 0.04a 0.02 0.01 0.01 0.005

Thiacloprid 0.01 3.5E-06 BDL BDL BDL BDL

Bifenthrin 0.015 0.0006 0.002 4.7E-06 0.0002 2.4E-06

Lambda-Cyhalothrin 0.0012 0.001 0.001 0.001 0.0006 0.0006

Deltamethrin 0.01 2.4E-06 0.0002 BDL BDL BDL

Cypermethrin 0.0016 0.004a 0.002a 0.005a 0.001 0.0006

Carbendazim 0.02 1.2E-06 0.001 2.4E-06 5.9E-05 4.7E-07

Imazalil 0.025 0.002 0.001 0.004 0.002 0.002

Metazachlor 0.08 0.0002 0.0002 0.0002 0.0002 0.0001

Metalaxyl 0.08 1.2E-06 0.0002 BDL BDL BDL

Azaconazole 0.001 4.7E-06 0.0005 0.0004 BDL 0.0006

Clomazone 0.133 1.2E-06 BDL BDL BDL BDL

Azoxystrobin 0.2 0.02 BDL BDL 0.01 0.04
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Discussion
Pesticides were detected in all studied fruits and veg-
etables, with 39 active ingredients (AIs) detected in all 
samples and 18 AIs in at least some of the food sam-
ples. Fonofos, fenitrothion and fenhexamid concentra-
tions were above the MRLs in watermelon, passion fruit, 
tomato, cabbage and eggplant. Risk assessment calcula-
tions show that EDIs for 18 pesticides were above the 
ADI in some cases, with HQs that ranged from 1 up to 
443 and thus may pose chronic health risks. Children 
experienced the highest HQs and therefore potentially 
higher chronic health risks from pesticide residues in 
fruits and vegetables.

Overall, 29% of the pesticides we tested for had EDIs 
over an ADI. This is a high proportion of exceedances 

compared to other risk assessment studies (Szpyrka et al. 
2013; Lozowicka et al. 2015; Mebdoua et al. 2017). When 
calculated by stage along the supply chain and age group, 
16 and 18 pesticides respectively had high EDIs are above 
their ADI. As discussed by JA Vaccaro and FG Huffman 
(Vaccaro and Huffman 2017), age is a key dietary risk fac-
tor that should be considered while performing health 
risk assessment Several fruit and vegetable surveillance 
studies have estimated EDI and similar EDIs. Studies in 
Chile, Poland and Kazakhstan had EDIs ranging from 
< 0.001 to 5.2 (Lozowicka et al. 2015; Elgueta et al. 2017, 
2019, 2020; Si et al. 2021; Szpyrka and Słowik-Borowiec 
2019), which is within the range of our findings.

Many pesticides were detected in all studied fruits 
and vegetables with levels below the EU MRLs except 

Table 2 (continued)

Pesticides ADI (mg/kg/bw/
day)

EDI (mg/kg/bw/day)

Farm Market Street Restaurant Home

Pyrimethanil 0.17 0.0002 0.0006 0.001 0.0005 0.0006

Spirotetramat 0.05 0.0003 0.0002 0.0002 2.9E-06 0.0001

Fenhexamid 0.2 0.1 0.2 0.6a 0.006 0.05

Fenarimol 0.01 0.002 0.0006 0.002 0.002 0.005

Fluazifop 0.004 0.0006 0.02a BDL BDL BDL

Flufenoxuron 0.01 1.8E-06 2.4E-06 1.8E-07 1.2E-06 4.1E-07

Pyriproxyfen 0.05 BDL BDL 2.9E-06 BDL BDL

Quinoxyfen 0.2 0.0002 5.9E-05 0.0003 1.2E-06 0.0003

Proquinazid 0.01 0.003 0.0006 0.002 0.001 BDL

BDL Below detection limit, ADI Acceptable Daily Intake, EDI Estimated Daily Intake
a EDI greater than ADI (HQ > 1)

Fig. 1 Hazard quotients for various pesticide residuals, for fruits and vegetables by stage of consumption along the chain
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Table 3 Estimated daily intake (mgkg/bw/day) for fruits and vegetables by age group

Pesticides ADI (mg/kg 
bw/day)

EDI (mgkg/bw/day)

General 
population

< 5 5-12 13-19 20-24 25-35 36-49 50+

Dithiocarbamatea 0.05 0.003 0.007 0.004 0.002 0.003 0.002 0.002 0.002

Omethoate 0.002 0.001 0.003a 0.002 0.001 0.001 0.001 0.001 0.001

Acephate 0.03 0.003 0.008 0.005 0.003 0.003 0.003 0.002 0.003

Monocrotophos 0.0006 0.0002 0.0005 0.0003 0.0004 0.0002 0.0002 0.0001 0.0002

Vamidothion 0.008 0.0001 0.0003 0.0002 0.0001 0.0001 0.0001 9.4E-05 0.0001

Dimethoate 0.002 0.0008 0.002a 0.001 0.0008 0.0009 0.0008 0.0007 0.0007

Mevinphos 0.001 0.0001 0.0003 0.0002 0.0001 0.0001 0.0001 9.4E-05 0.0001

Phosphamidon 0.0005 5.9E-06 1.7E-05 9.4E-06 5.8E-06 6.7E-06 5.4E-06 4.7E-06 5.1E-06

Fonofos 0.03 0.7a 2.0a 1.2a 0.7a 0.8a 0.8a 0.6a 0.6a

Azamethiphos 0.025 4.1E-05 0.0001 6.6E-05 4.1E-05 4.7E-05 3.8E-05 3.3E-05 3.5E-05

Dichlorvos 0.00008 0.01a 0.04a 0.02a 0.01a 0.01a 0.01a 0.01a 0.01a

Malaoxon 0.03 5.9E-05 0.0002 9.4E-05 5.8E-05 6.7E-05 5.4E-05 4.7E-05 5.1E-05

Methidathion 0.001 3.0E-05 8.2E-05 4.7E-05 2.9E-05 3.3E-05 2.7E-05 2.3E-05 2.5E-05

Malathion 0.03 0.0001 0.0003 0.0002 0.0001 0.0001 0.0001 9.4E-05 0.0001

Methacrifos 0.006 4.1E-05 0.0001 6.6E-05 4.1E-05 4.7E-05 3.8E-05 3.3E-05 3.5E-05

Ethoprophos 0.0004 5.9E-05 0.0002 9.4E-05 5.8E-05 6.7E-05 5.4E-05 4.7E-05 5.1E-05

Fenamiphos 0.0008 1.2E-05 3.3E-05 1.9E-05 1.2E-05 1.3E-05 1.1E-05 9.4E-06 1.0E-05

Quinalphos 0.001 0.0005 0.001a 0.0008 0.0005 0.0005 0.0004 0.0004 0.0004

Coumaphos 0.001 5.3E-07 1.5E-06 8.4E-07 5.2E-07 6.0E-07 4.9E-07 4.2E-07 4.5E-07

Chlorpyriphos-methyl 0.01 0.0002 0.0007 0.0004 0.0002 0.0003 0.0002 0.0002 0.0002

Temephos 0.001 3.0E-05 8.2E-05 4.7E-05 2.9E-05 3.3E-05 2.7E-05 2.3E-05 2.5E-05

Profenofos 0.03 0.06a 0.2a 0.1a 0.06a 0.07a 0.06a 0.05a 0.05a

Pirimiphosmethyl 0.03 1.8E-05 4.9E-05 2.8E-05 1.7E-05 2E-05 1.6E-05 1.4E-05 1.5E-05

Fenitrothion 0.005 0.1a 0.3a 0.2a 0.1a 0.1a 0.1a 0.09a 0.1a

Aminocarb 0.001 0.0009 0.003a 0.002a 0.0009 0.001a 0.0009 0.0007 0.0008

Methomyl 0.0025 0.0002 0.0005 0.0003 0.0002 0.0002 0.0002 0.0001 0.0001

Aldicarbfragment 0.001 0.0001 0.0003 0.0002 0.0001 0.0001 0.0001 9.4E-05 0.0001

Pirimicarb 0.035 0.0001 0.0003 0.0002 0.0001 0.0001 0.0001 9.4E-05 0.0001

Dioxacarb 0.001 0.02a 0.06a 0.03a 0.02a 0.02a 0.02a 0.02a 0.02a

Carbaryl 0.0075 3.0E-05 8.2E-05 4.7E-05 2.9E-05 3.3E-05 2.7E-05 2.3E-05 2.5E-05

Carbofuran 0.00015 5.9E-05 0.0002a 9.4E-05 5.8E-05 6.7E-05 5.4E-05 4.7E-05 5.1E-05

Alanycarb 0.001 0.1a 0.3a 0.2a 0.1a 0.1a 0.1a 0.09a 0.1a

Benfuracarb 0.01 0.09a 0.2a 0.1a 0.09a 0.1a 0.08a 0.07a 0.08a

Methiocarb 0.00025 0.0001 0.0003a 0.0002 0.0001 0.0001 0.0001 9.4E-05 0.0001

Imidacloprid 0.06 0.003 0.008 0.005 0.003 0.003 0.003 0.002 0.003

Acetamiprid 0.025 0.02 0.06a 0.04a 0.02 0.03a 0.02 0.02 0.02

Thiacloprid 0.01 1.2E-05 3.3E-05 1.9E-05 1.2E-05 1.3E-05 1.1E-05 9.4E-06 1.0E-05

Bifenthrin 0.015 0.0007 0.0015 0.001 0.0007 0.0008 0.0007 0.0006 0.0006

Lambda-Cyhalothrin 0.0012 0.001 0.003a 0.002a 0.001 0.001 0.0009 0.0008 0.0009

Deltamethrin 0.01 5.9E-05 0.0002 9.4E-05 5.8E-05 6.7E-05 5.4E-05 4.7E-05 5.1E-05

Cypermethrin 0.0016 0.003a 0.008a 0.004a 0.003a 0.003a 0.002a 0.002a 0.002a

Carbendazim 0.02 0.0003 0.0008 0.0005 0.0003 0.0003 0.0003 0.0002 0.0003

Imazalil 0.025 0.002 0.005 0.003 0.002 0.002 0.002 0.002 0.002

Metazachlor 0.08 0.0002 0.0005 0.0003 0.0002 0.0002 0.0002 0.0001 0.0002

Metalaxyl 0.08 5.9E-05 0.0002 9.4E-05 5.8E-05 6.7E-05 5.4E-05 4.7E-05 5.1E-05

Azaconazole 0.001 0.0002 0.0007 0.0004 0.0002 0.0003 0.0002 0.0002 0.0002

Clomazone 0.133 3.5E-06 9.9E-06 5.6E-06 3.5E-06 4E-06 3.3E-06 2.8E-06 3.0E-06
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for Fonofos, fenitrothion and fenhexamid. Our find-
ings are consistent with existing literature showing 
detection of many pesticides in fruits and vegetables 
(Elgueta et  al. 2019, 2020; Jallow et  al. 2017; López-
Dávila et  al. 2021). Like our findings, many past stud-
ies have pesticide residue levels that are above MRL 
values, especially organophosphates like fenitrothion 
(Szpyrka et al. 2013; Mebdoua et al. 2017; Si et al. 2021; 
Szpyrka and Słowik-Borowiec 2019; Eslami et al. 2021; 
Kazar Soydan et  al. 2021; Toptanci et  al. 2021; Akoto 

et  al. 2015). For example, recent studies in Ghana and 
Nigeria also found that many pesticides residue lev-
els in produce were above the respective MRLs (Fosu 
et  al. 2017; Adeleye et  al. 2019a). The most frequently 
detected pesticides that have exceeded MRLs have 
been organophosphates, carbamates, pyrethroids and 
neonicotinoids based on studies in Uganda, Ghana, 
Egypt, Poland and Chile (Fuhrimann et al. 2021; Stau-
dacher et al. 2020; Kaye et al. 2015; Atuhaire et al. 2017; 
Fosu et  al. 2017; Issa et  al. 2018; Szpyrka et  al. 2013; 

Table 3 (continued)

Pesticides ADI (mg/kg 
bw/day)

EDI (mgkg/bw/day)

General 
population

< 5 5-12 13-19 20-24 25-35 36-49 50+

Azoxystrobin 0.2 0.01 0.04 0.02 0.01 0.01 0.01 0.01 0.01

Pyrimethanil 0.17 0.0006 0.002 0.0009 0.0006 0.0007 0.0005 0.0005 0.0005

Spirotetramat 0.05 0.0002 0.0005 0.0003 0.0002 0.0002 0.0002 0.0001 0.0002

Fenhexamid 0.2 0.1 0.4a 0.2a 0.1 0.2 0.1 0.1 0.1

Fenarimol 0.01 0.002 0.006 0.003 0.002 0.002 0.002 0.002 0.002

Fluazifop 0.004 0.007a 0.02a 0.01a 0.007a 0.008a 0.006a 0.006a 0.006a

Flufenoxuron 0.01 1.8E-05 4.9E-05 2.8E-05 1.7E-05 2E-05 1.6E-05 1.4E-05 1.5E-05

Pyriproxyfen 0.05 3.5E-06 9.9E-06 5.6E-06 3.5E-06 4E-06 3.3E-06 2.8E-06 3.0E-06

Quinoxyfen 0.2 0.0002 0.0005 0.0003 0.0002 0.0002 0.0002 0.0001 0.0002

Proquinazid 0.01 0.002 0.005 0.003 0.002 0.002 0.002 0.001 0.001

BDL Below detection limit, ADI Acceptable Daily Intake, EDI Estimated Daily Intake
a EDI greater than ADI (HQ > 1)

Fig. 2 Hazard quotients for various pesticide residuals, for fruits and vegetables by age group
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Akomea-Frempong et al. 2017), especially in leafy veg-
etables (Elgueta et  al. 2019; 2020). Given that MRLs 
are determined based on good agricultural practices 
(GAPs) in field experiments and not necessarily health 
risks (Fothergill and Abdelghani 2013; Salazar 2011), 
consumption of pesticides below the MRLs might 
exceed health-based exposure benchmarks depending 
on individual consumption patterns.

Our findings confirm similar findings to other studies 
carried out in Poland, Nigeria and Saudi Arabia which 
found that many pesticides had a HQ > 1 (Szpyrka et al. 
2013; Odewale et al. 2021; Picó et al. 2018). On the other 
hand, literature from Turkey, Poland, Ghana, China and 
South Korea showed no chronic health risk associated 
with pesticide residues in fruits and vegetables (Si et al. 
2021; Szpyrka and Słowik-Borowiec 2019; Kazar Soydan 
et  al. 2021; Akoto et  al. 2015; Szpyrka 2015; Park et  al. 
2021; Zhang et al. 2021; Yi et al. 2020). Using probabilis-
tic modelling, Z Eslami, V Mahdavi and B Tajdar-Oranj 
(Eslami et al. 2021) in Iran found that pesticide residues 
did not pose health risks to adults and children. When 
assessed by stage along the supply chain, some pesticide 
showed a low HQ and consequently lower risk when con-
sumed at farm than at other stages further along the sup-
ply chain, such as restaurants and homes. Our findings 
are similar to those from previous studies which have 
shown a higher chronic health risk for stages upstream 
along the chain (Akomea-Frempong et  al. 2017; Jacxs-
ens et al. 2017). When HQ was assessed by age, children 
more frequently experienced higher hazard quotients 
(18-13) compared with adults (11-9) with HQS up to 443, 
compared with a maximum HQ for adults at XX. Our 
findings are similar to findings from studies from Chile, 
Nigeria and China that assessed risk by age which found 
that chronic health risks were higher in children com-
pared to adults (Elgueta et al. 2020; Si et al. 2021; Zhang 
et al. 2021; Adeleye et al. 2019b).

Our findings have implications on policy and future 
research. We used the EU MRLs and ADIs to evaluate 
exposures and risks, these benchmarks are lower and 
hence more sensitive than other guidelines. For example, 
Codex Alimentarius guidelines are higher, which would 
suggest lower health risks based on the exposure we eval-
uated. There is a need to develop Ugandan standards for 
MRLs and ADI based on local studies and context. The 
high HQs demonstrate in our study also demonstrate the 
need for routine monitoring and surveillance of pesticide 
residues in foods, especially in fruits and vegetables.

This study has several strengths and limitations. This 
study is the largest in Uganda to examine pesticide 
residues in fruits and vegetables; and we interviewed 
over 2000 residents to obtain information on dietary 
intake patterns. Dietary consumption data for fruit and 

vegetable was measured using a contextualised food 
album and thus presents a true reflection of the study 
community. We used mean residue concentrations to 
assess likely average exposures to consumers, but indi-
vidual variability in eating patterns may result in higher 
or lower chronic exposures (Szpyrka et  al. 2015). Addi-
tionally, we computed hazard quotients for consumption 
of individual foods. It is likely that consumers ate several 
different fruits or vegetables on any given day. In future 
analyses, we will use probabilistic methods to assess the 
range of potential exposures and health risks from more 
realistic diet patterns. We will also apply relative potency 
factors (RPFs) to assess cumulative health risks for pes-
ticide classes with established RPFS (U.S. Environmental 
Protection Agency 2002). Fruits and vegetables were not 
tracked from farm to fork during sampling due cost and 
time challenges. Future studies examining pesticide resi-
dues along the farm to fork chain should track and sam-
ple individual produce lots from harvest to the consumer. 
Additionally, this study was carried out in a primarily 
urban community and may not represent a typical Ugan-
dan rural setting. Finally, dietary consumption meas-
urement did not cover the broad spectrum of fruits and 
vegetables but rather focussed on commonly consumed 
items within the study area (watermelon, passion fruit, 
tomato, cabbage and eggplant). However, the study area 
represents a large proportion of the Ugandan population 
and several commonly eaten foods.

Conclusion
Sixty-two (62) pesticide residues were detected in fruits 
and vegetables from farm to fork. Concentrations of fon-
ofos, fenitrothion and fenhexamid were above EU MRLs 
in watermelon, passion fruit, tomato, cabbages and egg-
plant. Exposures to 16 and 18 pesticides exceeded health-
based benchmarks and potentially pose chronic health 
risks to consumers, especially to children. The study 
findings demonstrate the urgent need for routine pesti-
cide monitoring and surveillance and risk assessment for 
fruits and vegetables in local Ugandan markets. There is 
also need to regulate the levels of pesticide in fruits and 
vegetables in order to protect consumers, especially the 
children who present higher chronic health risks.

Abbreviations
ADI: Acceptable Daily Intake; AIs: Active Ingredients; BDL: Below Detection Limits; 
BW: Body Weight; C: Mean concentration of each Pesticide; EDI: Estimated Daily 
Intake; EU MRLs: European Union Maximum Residual Limits; FVCR: Fruit and Veg-
etable Intake Rate; GAPs: Good Agricultural Practices; GC – MS: Gas Chromatog-
raphy – Mass Spectrometry; HQ: Hazard Quotient; KMA: Kampala Metropolitan 
Area; LC – MS/MS: Liquid Chromatography – Tandem Mass Spectrometry; LOD: 
Limit of Detection; LOQ: Limit of Quantification; MRLs: Maximum Residual Limits; 
NCDs: Noncommunicable Diseases; QuEchERS: Quick, Easy, Cheap, Effective, Rug-
ged and Safe; RPFs: Relative Potency Factors; U.S. FDA: United States Food and 
Drugs Authority; WHO: World Health Organisation.



Page 12 of 14Ssemugabo et al. International Journal of Food Contamination             (2022) 9:4 

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40550- 022- 00090-9.

Additional file 1: Table 1A. Hazard quotient for pesticides with EDI 
greater than the ADI at different stages along the chain. This file contains 
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